Synthetic design of strong promoters.

نویسندگان

  • Michael R Schlabach
  • Jimmy K Hu
  • Mamie Li
  • Stephen J Elledge
چکیده

We have taken a synthetic biology approach to the generation and screening of transcription factor binding sites for activity in human cells. All possible 10-mer DNA sequences were printed on microarrays as 100-mers containing 10 repeats of the same sequence in tandem, yielding an oligonucleotide library of 52,429 unique sequences. This library of potential enhancers was introduced into a retroviral vector and screened in multiple cell lines for the ability to activate GFP transcription from a minimal CMV promoter. With this method, we isolated 100 bp synthetic enhancer elements that were as potent at activating transcription as the WT CMV immediate early enhancer. The activity of the recovered elements was strongly dependent on the cell line in which they were recovered. None of the elements were capable of achieving the same levels of transcriptional enhancement across all tested cell lines as the CMV enhancer. A second screen, for enhancers capable of synergizing with the elements from the original screen, yielded compound enhancers that were capable of twofold greater enhancement activity than the CMV enhancer, with higher levels of activity than the original synthetic enhancer across multiple cell lines. These findings suggest that the 10-mer synthetic enhancer space is sufficiently rich to allow the creation of synthetic promoters of all strengths in most, if not all, cell types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Engineering of synthetic, stress-responsive yeast promoters

Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducible by specific endogenous or environmental conditions is still rarely undertaken. In this study, we engineered and characterized a set of strong, synt...

متن کامل

The development and characterization of synthetic minimal yeast promoters

Synthetic promoters, especially minimally sized, are critical for advancing fungal synthetic biology. Fungal promoters often span hundreds of base pairs, nearly ten times the amount of bacterial counterparts. This size limits large-scale synthetic biology efforts in yeasts. Here we address this shortcoming by establishing a methodical workflow necessary to identify robust minimal core elements ...

متن کامل

Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus.

Actinomycetes are important organisms for the biosynthesis of valuable natural products. However, only a limited number of well-characterized native constitutive promoters from actinomycetes are available for the construction and engineering of large biochemical pathways. Here, we report the discovery and characterization of 32 candidate promoters identified from Streptomyces albus J1074 by RNA...

متن کامل

Design of synthetic yeast promoters via tuning of nucleosome architecture

Model-based design of biological parts is a critical goal of synthetic biology, especially for eukaryotes. Here we demonstrate that nucleosome architecture can have a role in defining yeast promoter activity and utilize a computationally-guided approach that can enable both the redesign of endogenous promoter sequences and the de novo design of synthetic promoters. Initially, we use our approac...

متن کامل

Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species

Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core ...

متن کامل

Compact, synthetic, vaccinia virus early/late promoter for protein expression.

Vaccinia virus, a member of the poxvirus family, is widely used as a mammalian cell expression vector. Vaccinia virus replicates in the cytoplasm and has its own transcriptional system, making it necessary to use viral promoters. Here, we describe the design, construction and use of a 40-bp synthetic, vaccinia virus promoter with largely overlapping early and late regulatory elements. Convenien...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 6  شماره 

صفحات  -

تاریخ انتشار 2010